IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

The low-temperature specific heat anomaly of the SU(2) invariant 1D Heisenberg

antiferromagnet of spin S in a small magnetic field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys.: Condens. Matter 3 1679
(http://iopscience.iop.org/0953-8984/3/11/025)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.96
The article was downloaded on 10/05/2010 at 22:57

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/3/11
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys.: Condens. Matter 3 (1991) 1679-1683. Printed in the UK

LETTER TO THE EDITOR

The low-temperature specific heat anomaly of the SU(2)
invariant 1p Heisenberg antiferromagnet of spin S in a
small magnetic field

Kong-Ju-Bock Lee

Center for Theoretical Physics, Seoul National University, Seoul 151-742, Korea
Received 12 December 1990

Abstract. It is expected that the specific heat of the SU(2)-invariant 1D Heisenberg anti-
ferromagnet of spin § is linear to the temperature at low Twith the linear coefficient y; being
a function of field A. Our main result is that limy_q limz_g ys = 3[1 + VIT(5)(e/S)5/x] #
limr.glimy_ovs = 25/(1 + §). Thisextends the previousresultfor § = § toother spin values.
We also provide an approximate interpolation formula between these two limits as a function
of H/T for very small H and T

It is well known by the Bethe-ansatz method that the quantum spin chains show much
non-trivial behaviour. In particular, the logarithmic singularities appear to be common
in the integrable quantum spin chains with SU symmetry. The magnetic susceptibility
at zero temperature of the SU(2)-invariant isotropic Heisenberg chain of spin § with an
antiferromagnetic coupling J in a small magnetic field is given by (J = 1)

20, HY = (48/xz)(1 + S/{In H| — $2In|ln H|/In? H + . ..) (1)

which shows logarithmic singularities as H— 0. The constant zero-field y was obtained
by Griffiths (1964), the first logarithmic correction by Babujian (1983) and the second
one by Lee and Schlottmann (1987).

The zero-field specific heat of the SU(2)-invariant Heisenberg antiferromagnet of
spin S has been studied by Babujian by analysing the thermodynamic Bethe-ansatz
equations. He found that the specific heat C*=? = y;T in the low temperature region
with

T—0 H—0 X 1—x

2 2 % e -
lim lim ys=-.___22j dx(ln(l x)+ lnx) .
3 =22 ,00
where

x, = sin?[z/(25 + 2)]/sin*[z(r + 1)/(2S + 2)].

Note that the integral cannot be evaluated exactly except for y,, =% and y, = 1.
However, the numerical calculation shows that the zero-field v converges to the value
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corresponding to that obtained by the prediction of the critical behaviour of iD quantum
spin systems via conformal field theory (Affleck 1986), i.e.,

lim lim ys = 25/(1 + ). (3)

For this reason, from now on, we are going to use this expression instead of (2).

In this letter we report the anomalous properties of the specific heat for T < J and
28H < Jby extending the arguments for § = 3 (Lee and Schlottmann 1989) to the higher
spins. Our main result is that the linear coefficient of the specific heat, v, depends on
the way the singular point H = T = 0 is approached, i.e.,

lim lim ys = {1 + V'ST(S)}(e/S)S/n] # lim lim ys =2S/(1+ §) (4
Bim lim yg = 4 (S)(e/S)*/x] # lim lim ys =25/(1+5)  (4)
where T is the gamma function. We also obtain an approximate interpolation formula

between these two limits for situations in which H and T tend to zero simultaneously.
The SU(2) generalization of the § = § Heisenberg chain is given by (Kulish et 2/ 1981)

N N
Hg=J 2 Qx5S Sisy) = 2H 2, 8} (5)
=1 f=1

where J is the antiferromagnetic coupling constant and

28 3
Qasx) = 2 (w(j + 1) = (1)) [[ = ©6)
j=1 12 %) X

with x; = $[{(! + 1) — 25(S + 1)] and 3 the digamma function.

The excited states of the model consist of magnons and bound states of these
magnons. Each bound state of n magnons is characterized by the thermodynamic energy
potential £,(1), where A is a real rapidity and related to the momentum. £,(A) where
n=1,...,%, is then determined by the so-called thermodynamic Bethe-ansatz
equations (Babujian 1983)

H J -
In(1+ en/”) =20~ 20 2 Apas ¥ G+ 2 An *In(1 + €757 )
m= 1
where the centre asterisk denotes a convolution, G(1) = (4 cosh(Ax/2))"" and

1 = X
An.m(l) = ??,_J;j de e ~ie COthla)‘(e'!"‘“mHmt - e—(n+m)1a)|)_

The free energy per site is given by

F(T, H) = F(0,0) - Tf dA G In(L + ees/Ty ®)
where
o1
e E - .
221 for integer §

F(0,0) = s-1/2
—Jn2-7 > S for half-integer §
k=t 2k

It has been shown that the £,(4) for n # 2§ are positive for ali A, while £,i(A) changes
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sign when H 5 (. We define a parameter B such that £,5(+B) = 0 since the g,(1) are
symmetric and monotonically increasing for A > 0. As a consequence of £, ., > 0, in
the limit 7> 0 with finite field we have a contribution of only m = 25 to the integral in
equation (7). Hence we can rewrite the integral equation (7) for 7 = 25 (note that we
need only £,5(4) to obtain the free energy in equation (8)) as

£25(A) = H = 2nJG(A) + K = TIn(1 + ecs'T) (9)
where the integral kernel is given by
1 = . sinh(2§ — 1) e| + e 71! sinh 28| w]
m—— —iwd
K@) 27 J._m doe 2 cosh|w| sinh 25| w} ) (10)

It is sufficient to expand £35(4) to order T2 to evaluate the low temperature specific heat
coefficient in the field, i.e., &5 = £{Q + T?£{. We then have the integral equations for
£ and £3:

e®() = H - 22JG(R) +2 f: dA’ K@ — Ae® @) (11)
@
m(h)—f- dgf [K(h + B) + K(A — B)] +2 f A K@ — )@@, (12)

Here we have used the Sommerfeld formula to expand In(1 + e®2'T) at low T The free
energy is expressed by

F(T, H) = F(0,0) - 2 f T4 G

(2

Eqnation (11) was solved by Babujian (1983) for very small fields yielding the following
useful relations

B~—(2/m)In H

defs| _ wH (1+ S S’m|nH| )
dA |p 4VS 2llnH]  2In*H '

Note that the parameter B tends to infinity as H— 0.

To obtain limy._,q lim_, ; ¥5, we can take the limit B— o in equation (13). However
we have to be careful in doing this because the integral involving £ 3 (A) contributes to
the v values with the same order of |dely /dA|5! G(B). Hence we cannot simply neglect
the integral. For this reason, we have to solve the integral equation (12) to obtain the
linear specific heat coefficient ys in finite field. For this purpose let us define
p(A) = 3(2)(,1 + B) which satisfies the Wiener-Hopf-type integral equation
d 0

£35

di

0
dsg)

di

. G(B) +2 L. di G(A)sg’g(z)). (13)

(14)

@)= [K(l) + K(2 + B)]

+ fm A [KO = A7) + K + A" + B)g(A).
[
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Since we are interested in a small field (i.e., in a large B) and K(B) ~ 1/B for large B,
we solve the equatlon of @(2) iteratively, <;o(.ﬁ.) @1(A) + @A) + ..., with @, being
of higher order in 1/B than @,. Then we have

(@
d a3
P1(A) =——+ K(l) + J dA K% — 27)@, (R)

di o

P20 = @3(-A=28)+ [ ' KOG = )2, (15)
0
After some calculation we obtain ¢ ,(A = 0)
)

? | degg

P, (A) = ——." dw e’“’"‘ 6 Tﬁ,ﬂ (gg(w) -1) (16)

where

) I'( —j@/ny( —j250fexy =i(2Sa/x)
83 (@) = Via/s) (r(lg —)i(wf::)r(_i)zswﬁj'

It is not difficult to show that ¢, contributes to order 1/B? (or higher), which is not
interesting to us. Inserting (14) and (16) into the free energy (13), we obtain
lim;_{_,olimr_.g Ys— i[l + ST(S)(E/S)S/.TI] F* ]im;‘_,o limH...,g Vg = 23/(1 + S) The Vs
in finite field is less than yy in zZero field as expected since the entropy is reduced in the
ordered system. This result also reproduces the one for S = § correctly.

Finally let us derive an approximate interpolation formula between the above two
values as a function of H/T for very small H and T..

The integral equation (7) yields asymptotically free spin solutions for £,(A) whenever
either | A|is large or the string index » is sufficiently away from 25. The free spin solution
is given by

¢, = Tlnsinh?(n + 1)xg/sinh? x, (17

where x, = H/T. Since at low T the free spin solution gives £, = 2nf, we approximate
the integral equation (7) for n = 25 by assuming the free solutions for m # 285, We then
have an integral equation for » = 28 decoupled from all others, 1.e.,

Ea5(A) = Hg(T) — 2mIG(A) + K TIn(1 + e*=/T) (18)
where Hg, the effective field induced by the contributions of &, at low T, is given by
. smh 28x,[sinh(28 + 1)x ]S sinh(28 + 2)x,
Hy(T) = - ey T
sinh xg sinh(2S + L)xq

The first term represents the contributions of £,<,¢ and vanishes for § = 4 as expected,
while the second term is obtained by the approximation for g, 5. H; yields a correct
zero-Tlimit, i.e., limy,o Hg(T) = lim,,_ Hs = H. However, our approximation does
not take into account the zero-H limit appropriately. The simplest way to fix this limit is
to introduce a parameter & to Hg such that

smh(% + l)xn

inh 28x(sinh(2S + 141728
51 x o sinh( l)x 1" + Tl 19)

Hs(T) = sinh xq sinh agxg

as will be determined later using the zero-field yg values. Since equation (18) is just the
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integral equation (9) with H being replaced by Hy(T), using the same procedure as
before we obtain the linear specific heat coefficient (J = 1)

vs(T, H) = §[1 + V' ST(8)(e/S) /]

+ (48/x*)(8Hs/aT)*(1 + S/|In Hs| - S? In|In Hg|/in> A + .. ).
(20)
This expression recovers the y; values in the zero-temperature limit as expected, i.e.,
{1 + V' ST(8)(e/8)S/z]. While in the zero-field limit, i.e., xo— 0, it yields
lim lim s = }[1 + VST(S)(e/$)5/n]

T—0 H=-0
+ (45/72) In2[25(28 + 1) 7' H125(1 + 1/ag)) (21)

Now we evaluate the parameter a; by equating the equation (21) to the expected zero-
field y; = 25/(1 + §). a is then given by

af! = exp{[(a*/ASYy§F o™ — yEII)] + In(2S + 1) 712 /28) ~ 1

where yZrofeld = 25/(1 + §)and y i = §[1 + V' ST()(e/S)*/x). Note that our inter-
polation formula (20) is valid only for T <€ Jand 25H <€ J. Hence it follows that the linear
specific heat coefficient vy is monotonically decreasing from the y % vajue as x, is
increased, and is rapidly saturated to the y 5 value.

We expect that the above arguments for the SU(2)-invariant Heisenberg anti-
ferromagnet of arbitrary spin § can be extended to the SU(N )-invariant spin chains with

Nbeing 2§ + 1 (Sutherland 1975).
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