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LETTER TO THE EDITOR 

The low-temperature specific heat anomaly of the SU(2) 
invariant ID Heisenberg antiferromagnet of spin S in a 
small magnetic field 

Kong-Ju-Bock Lee 
Center for Theoretical Physics, Seoul National University, Seoul 151-742, Korea 

Received 12 December 1990 

Abstract. It is expected that the specific heat of the SU[Z)-invariant ID Heisenberg anti- 
ferromagnelofspinSislinearto the temperatureatlow Twith thelinearcoefficient y,being 
a function of field U. Our main result is that limH-o limrAo ys = $[I + <R(S)(e/S)'/z] # 
limr-olim,,,,ys = U/(] + S). ThisextendsthepreviousresultforS = 6 tootherspinvalues. 
Wealso provideanapproximateinterpolation formula between these twolimitsasafunclion 
of H/Tfor very small H and T. 

It is well known by the Bethe-ansatz method that the quantum spin chains show much 
non-trivial behaviour. In particular, the logarithmic singularities appear to be common 
in the integrable quantum spin chains with SU symmetry. The magnetic susceptibility 
at zero temperature of the SU(2)-invanant isotropic Heisenberg chain of spin S with an 
antiferromagnetic coupling J in a small magnetic field is given by ( J  = 1) 

x ( 0 , H )  = (4S/n2)(l +S//lnHI - S21nIlnH//ln2H+. . .) (1) 

which shows logarithmic singuIarities as H -  0. The constant zero-field x was obtained 
by Griffiths (1964), the first logarithmic correction by Babujian (1983) and the second 
one by Lee and Schlottmann (1987). 

The zero-field specific heat of the SU(2)-invariant Heisenberg antiferromagnet of 
spin S has been studied by Babujian by analysing the thermodynamic Bethe-ansatz 
equations. He found that the specific heat C"=' = ysT in the low temperature region 
with 

2 2 
1 - x  

lim lim ys = - - - 2 
T - t O H - 0  3 E z n = ~  

where 

x. = sin2[n/(2S + 2)]/sinz[n(n + 1)/(2S + 2)]. 

Note that the integral cannot be evaluated exactly except for y112 = H and y, = 1. 
However, the numerical calculation shows that the zero-field ysconverges to the value 
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corresponding to that obtained by the prediction of the critical behaviour of ID quantum 
spin systems via conformal field theory (Affleck 1986). i.e., 

lim lim ys = 2S/(1 + S). (3) T-0 H-0 

For this reason, from now on, we are going to use this expression instead of (2).  
In this letter we report the anomalous properties of the specific heat for T Q J and 

2SH 4 J by extending the arguments for S = 1 (Lee and Schlottmann 1989) to the higher 
spins. Our main result is that the linear coefficient of the specific heat, ys, depends on 
the way the singular point H = T = 0 is approached, i.e., 

where r is the gamma function. We also obtain an approximate interpolation formula 
between these two limits for situations in which H and T tend to zero simultaneously. 

The SU(2) generalization of the S = 4 Heisenberg chain is given by (Kulish etall981) 
N N 

kls = J Qzs(S, . S,+i) - 2H 'c S: ( 5 )  
, = I  f = 1  

where J is the antiferromagnetic coupling constant and 

with xf = t( l( l  i 1) - 2S(S + l)] and y the digamma function. 
The excited states of the model consist of magnons and bound states of these 

magnons. Each boundstate of n magnonsischaracterized by the thermodynamicenergy 
potential &,,(A), where A is a real rapidity and related to the momentum. &,(A) where 
n = 1,. . . ,m, is then determined by the so-called thermodynamic Bethe-ansatz 
equations (Babujian 1983) 

where the centre asterisk denotes a convolution, G(A) = (4 cosh(hn/2))-' and 

1 "  Ae,JA) dwe-i*A COthlW((e-ln-mibl - e-(n+m)l*l), 
-n 

The free energy per site is given by 
I 

F(T, H) = F(0,O) - T dh G(A) In(1 + 
-x 

where 

1 S 

for integer S 

1 F(0,O) = S-l/Z 

-J 2 - J - for half-integer S 

It has been shown that the €,(A) for n + 2s are positive for all h,  while E&) changes 
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sign when H # 0. We define a parameter B such that &=(+B) = 0 since the &.(A) are 
symmetric and monotonically increasing for A >  0. As a consequence of sfln+= > 0, in 
the limit T--, 0 with finite field we have a contribution of only m = 2S to the integral in 
equation (7). Hence we can rewrite the integral equation (7) for n = 2s (note that we 
need only &,(A) to obtain the free energy in equation (8)) as 

&=(A) = H - k J G ( A )  + K *  Tln(1 + eL=/T) (9) 

where the integral kernel is given by 

It is sufficient to expand €=(A) to order Tz to evaluate the low temperature specific heat 
coefficient in the field, i.e., E= = + T2&$. We then have the integral equations for 
E$) and 2s' 

Ds 

€$(A) = H - 2nJG(A) + 2 dA'K(A -A')&$(h') (11) 
B 

Jr2 d&$) -1 m 

6 B 
&$)(A) = - I- I [K(d + B)  + K(A - B ) ]  + 2 1  dA' K(A - A')&E)(A') .  (12) 

Here we have used the Sommerfeld formula to expand In(1 + ee=IF) at low T. The free 
energy is expressed by 

F(T, H) = F(0,O) - 2 1" dA G(A)s$(A) 
B 

Equation (11) was solved by Babujian (1983) for very small fields yielding the following 
useful relations 

B - -(2/n) In H 

Note that the parameter B tends to infinity as H-+ 0. 
To obtain limH+, limr+o ys, we can take the limit B-+ m in equation (13). However 

we have to be careful in doing this because the integral involving €%(A) contributes to 
the y,values with the same order of I d&g)/dA 1;' G(B). Hence we cannot simply neglect 
the integral. For this reason, we have to solve the integral equation (12) to obtain the 
linear specific heat coefficient ys in finite field. For this purpose let us define 
rp(A) = &$(A + B) which satisfies the Wiener-Hopf-type integral equation 

+ lom dA' [K(A -A ' )  + K(A +A' + B)]q(A') .  
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Since we are interested in a small field (i.e., in a large B )  and K(B) - 1/23 for large B,  
we solve the equation of q ( A )  iteratively, p(A) = q l ( A )  + q 2 ( A )  + . . . ~ with p2 being 
of higher order in 1/B than qI. Then we have 

After some calculation we obtain pI(A 3 0) 

where 

It is not difficult to show that q2 contributes to order 1/B2 (or higher), which is not 
interesting to us. lnsertin (14) and (16) into the free energy (13), we obtain 
lim,,olimr-oys = 411 + &(S)(e/S)'/z] # limT,o limH,o ys = 2S/(1 + S). The ys 
in finite field is less than ys in zero field as expected since the entropy is reduced in the 
ordered system. This result also reproduces the one for S = f correctly. 

Finally let us derive an approximate interpolation formula between the above two 
values as a function of H/Tfor very small H and T .  

The integral equation (7) yields asymptotically free spin solutionsfor E&) whenever 
either \A\ is large or the string index n is sufficiently away from 2s. The free spin solution 
is given by 

E, = Tln sinh2(n + I)xo/sinhz xo (17) 
where x,, = H / T .  Since at low T the free spin solution gives E, = ZnH, we approximate 
the integral equation (7) for n = 2s by assuming the free solutions form # 2s. We then 
have an integral equation for n = 2s decoupled from all others, i.e., 

&,(A) = P s ( T )  - &JG(A) + K *  Tln(1 + e'U/') (18) 
where H s ,  the effective field induced by the contributions of low T ,  is given by 

sinh 2Sxo[sinh(2S + l ) ~ ~ ] - ' + ' ~ ~  
sinh x o  

sinh(2S + 2)xo 
+ sinh(2S + l)xo ' H,(T) = TIn 

The first term represents the contributions of E.<= and vanishes for S = 4 as expected, 
while the second term is obtained by the approximation for E , , ~ .  Hs yields a correct 
zero-Tlimit, i.e., limT-,o Hs(T) = lim,,,o = H. However, our approximation does 
not take into account the zero-H limit appropriately. The simplest way to fix this limit is 
to introduce a parameter as to His such that 

(19) 
sinh 2Sxo[sinh(21i + l)xoJ-'+l/zs sinh(or, + l)xo  hi,(^) = Tln ~" + Tln 

sinh xo sinh esx0 ' 

as will be determined later using the zero-field ysvalues. Since equation (18) is just the 
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integral equation (9) with H being replaced by &(T), using the same procedure as 
before we obtain the linear specific heat coefficient ( J  = 1) 

Y S V ,  H) = t[l + v3us)(e/s)s/4 
+ (4S/~~)(aF?~/dT)'(l +S/llnI?sI - S Z I n ~ l n F ? s ~ / l n 2 ~ s  +. .  .). 

(20) 
This expression recovers the ys values in the zero-temperature limit as expected, i.e., 
f[l + V % ( S ) ( ~ / S ) ~ / X ] .  While in the zero-field limit, i.e.,xo+ 0, it yields 

+ (~s/xZ) In*[2S(2S + I)-~+' , '~(I  + 1/ws)]. (21) 
Now we evaluate the parameter as by equating the equation (21) to the expected zero- 
field ys = D/(1 + s). as is then given by 

a,' = exp{[(lr2/4s)(y~""'ld - yz""d))l* + ln(2S + 1)'-',m/2s) - 1 

where vLemEeld 1 s  = 2S/(1 + S) and ytEetd = i[l + flr(S)(e/S)s/lrJ. Note that our inter- 
polation formula (20) is valid only for T Q Jand 2SH Q J .  Hence it follows that the linear 
specific heat coefficient ys is monotonically decreasing from the yFf ie ld  value as xo  is 
increased, and is rapidly saturated to the yzficld value. 

We expect that the above arguments for the SU(2)-invariant Heisenberg anti- 
ferromagnet of arbitrary spin Scan be extended to the SU(N)-invariant spin chains with 
Nbeing2.S + 1 (Sutherland 1975). 
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the Korea Science and Engineering Foundation. 
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